Quadrature formula for sampled functions

نویسندگان

  • Khalid Minaoui
  • Thierry Chonavel
  • Benayad Nsiri
  • Driss Aboutajdine
چکیده

Abstract—This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we update quadrature weights accordingly. We supply the theoretical quadrature error formula for this new approach. We show on examples the potential gain of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical indefinite integration of functions with singularities

We derive an indefinite quadrature formula, based on a theorem of Ganelius, for Hp functions, for p > 1, over the interval (−1, 1). The main factor in the error of our indefinite quadrature formula is O(e−π √ ), with 2N nodes and 1 p + 1 q = 1. The convergence rate of our formula is better than that of the Stenger-type formulas by a factor of √ 2 in the constant of the exponential. We conjectur...

متن کامل

A Numerical Integration Formula Based on the Bessel Functions

In this paper, we discuss the properties of a quadrature formula with the zeros of the Bessel functions as nodes for integrals ∫ ∞ −∞ |x|f(x)dx, where ν is a real constant greater than −1 and f(x) is a function analytic on the real axis (−∞,+∞). We show from theoretical error analysis that (i) the quadrature formula converges exponentially, (ii) it is as accurate as the trapezoidal formula over...

متن کامل

On the Universalityof the Gaussian Quadrature FormulaKnut

Several deenitions of universality of an n-point quadrature formula Q n are discussed. Universality means that Q n is able to compete with the respective optimal formula in many classes of functions. It is proved in a certain sense that the Gaus-sian quadrature formula satisses such a universality criterion. The underlying classes of functions are In each of these classes, we loose at most the ...

متن کامل

Hyperinterpolation in the cube

We construct an hyperinterpolation formula of degree n in the three-dimensional cube, by using the numerical cubature formula for the product Chebyshev measure given by the product of a (near) minimal formula in the square with Gauss-Chebyshev-Lobatto quadrature. The underlying function is sampled at N ∼ n/2 points, whereas the hyperinterpolation polynomial is determined by its (n + 1)(n + 2)(n...

متن کامل

Optimal Quadrature Formula in the Sense of Sard in K2(p3) Space

We construct an optimal quadrature formula in the sense of Sard in the Hilbert space K2(P3). Using Sobolev’s method we obtain new optimal quadrature formula of such type and give explicit expressions for the corresponding optimal coefficients. Furthermore, we investigate order of the convergence of the optimal formula and prove an asymptotic optimality of such a formula in the Sobolev space L 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010